A Double Mechanism for the Mesenchymal Stem Cells' Positive Effect on Pancreatic Islets
نویسندگان
چکیده
The clinical usability of pancreatic islet transplantation for the treatment of type I diabetes, despite some encouraging results, is currently hampered by the short lifespan of the transplanted tissue. In vivo studies have demonstrated that co-transplantation of Mesenchymal Stem Cells (MSCs) with transplanted pancreatic islets is more effective with respect to pancreatic islets alone in ensuring glycemia control in diabetic rats, but the molecular mechanisms of this action are still unclear. The aim of this study was to elucidate the molecular mechanisms of the positive effect of MSCs on pancreatic islet functionality by setting up direct, indirect and mixed co-cultures. MSCs were both able to prolong the survival of pancreatic islets, and to directly differentiate into an "insulin-releasing" phenotype. Two distinct mechanisms mediated these effects: i) the survival increase was observed in pancreatic islets indirectly co-cultured with MSCs, probably mediated by the trophic factors released by MSCs; ii) MSCs in direct contact with pancreatic islets started to express Pdx1, a pivotal gene of insulin production, and then differentiated into insulin releasing cells. These results demonstrate that MSCs may be useful for potentiating pancreatic islets' functionality and feasibility.
منابع مشابه
Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملIn-vitro Differentiation of Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells to Insulin-Producing Cells
Background & Objective: Diabetes is a major chronic metabolic disease in the world. Islet transplantation is a way to treat diabetes. Unfortunately, this method is restricted due to graft rejection and lack of donor islets. Mesenchymal Stem Cells (MSCS) have the ability to differentiate into Insulin-Producing Cells (IPCs). In this study, Human Umbilical Mesenchymal Stem Cells (HUMSCS) were in...
متن کاملDifferentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors
Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...
متن کاملبررسی اثر گلیبنکلامید بر ترشح انسولین و فعالیت گلوکوکیناز در جزایر لانگرهانس پانکراس موشهای صحرایی سالم و دیابتی
Background: Sulfonylurea agents such as Glibenclamide (Glyburide) have been widely prescribe in treatment of type 2 diabetic patients for decades, but controversy remains about their precise mechanism of action. On the other hand, glucokinase serves as a glucose sensor in pancreatic β-cells and plays a key role in the regulation of insulin secretion and glucose homeostasis. The aim of the pres...
متن کاملGestational diabetes leads to down-regulation of CDK4-pRB-E2F1 pathway genes in pancreatic islets of rat offspring
Objective(s): The link between a hyperglycemic intrauterine environment and the development of diabetes later in life has been observed in offspring exposed to gestational diabetes mellitus (GDM), but the underlying mechanisms for this phenomenon are still not clear. Reduced β-cells mass is a determinant in the development of diabetes (type 1 and type 2 diabetes). Some recent studies have provi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014